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Compared with other primates, childbirth is remarkably difficult in
humans because the head of a human neonate is large relative to
the birth-relevant dimensions of the maternal pelvis. It seems
puzzling that females have not evolved wider pelvises despite the
high maternal mortality and morbidity risk connected to child-
birth. Despite this seeming lack of change in average pelvic
morphology, we show that humans have evolved a complex link
between pelvis shape, stature, and head circumference that was
not recognized before. The identified covariance patterns contribute
to ameliorate the “obstetric dilemma.” Females with a large head,
who are likely to give birth to neonates with a large head, possess
birth canals that are shaped to better accommodate large-headed
neonates. Short females with an increased risk of cephalopelvic
mismatch possess a rounder inlet, which is beneficial for obstet-
rics. We suggest that these covariances have evolved by the
strong correlational selection resulting from childbirth. Although
males are not subject to obstetric selection, they also show part
of these association patterns, indicating a genetic–developmental
origin of integration.
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Childbirth is remarkably difficult in humans because of the
tight fit of the human neonate through the maternal birth

canal (1, 2). Obstructed labor occurs in 3–6% of all births and is
thought to be globally responsible for 8% of all maternal deaths
today (3–5). The most frequent cause of obstructed labor is
cephalopelvic disproportion—a mismatch between the fetal
head and the mother’s pelvis (5). Without effective medical in-
tervention, maternal mortality due to childbirth is estimated to
be 1.5% (6), but many more women experience acute or chronic
morbidity and develop lasting disabilities as a consequence of
obstructed labor (4, 7). In evolutionary terms, there have been
incredible fitness costs associated with childbirth in humans
throughout modern human evolution, yet the birth canal has not
become sufficiently wider.
This “obstetric dilemma” (8) is considered to be a conse-

quence of the conflicting demands on the human pelvis imposed
by bipedal locomotion and a large brain size. The shape of the
human pelvis is assumed to be a compromise solution. Human
pelvises are shaped for upright walking, but at the same time,
they must remain wide enough for giving birth to large-headed
neonates (1, 2, 9–12). Upright walking evolved at least 4–5 mil-
lion years ago and required major skeletal adjustments (9, 13,
14). Only in the late Pleistocene (600,000–150,000 B.P.) did a
major increase in brain size evolve (13), and the increasingly
large-headed neonates had to be delivered through a pelvis that
had earlier been adapted to bipedalism. The obstetric dilemma
might further be aggravated by a higher infant survival rate for
heavier neonates (15), implying that a higher birth weight is fa-
vored by selection. However, a recent study showed that neo-
natal size and human gestation length are limited not only by
pelvic dimensions but also by maternal metabolic capacity (16).
Phenotypic plasticity of pelvic dimensions and head size in

response to changes in nutrition, poor food availability, and infec-
tious disease burden, among others, might influence the severity of
the obstetric dilemma (17–19).
Despite the effect of environmental factors, pelvic dimensions

are highly heritable in human populations (most pelvic traits
have heritabilities in the range of 0.5–0.8) (20) (SI Text and Table
S1). It has further been claimed that low levels of integration in
the pelvis enable high evolvability (14, 21, 22), yet pelvis shape
has seemingly not sufficiently responded to the strong selection
pressure imposed by childbirth. Despite insufficient change in
average pelvic morphology, selection might have shaped the
covariation between pelvic morphology and other body di-
mensions to ameliorate the consequences of pelvic constraints
on childbirth. Cephalopelvic disproportion is determined by the
mother’s pelvic dimensions relative to the size of the fetal head,
implying that pelvis and head are subject to correlational selec-
tion. A twin study (23) reported a heritability of 0.73 for in-
tracranial volume, despite the apparent plasticity in head shape
due to cranial deformations during birth (resulting in a herita-
bility of 0.14 for neonatal head circumference but of 0.90 for
head circumference of infants aged 4–5 mo) (24) (SI Text and
Table S1). Because of the considerable heritabilities for head
size and pelvic dimensions, we predict that females with a larger
head have evolved a birth canal that can better accommodate
large-headed neonates, compared with females with a smaller
head, who are likely to give birth to children with smaller heads.
Similarly, the risk of birth complications increases if the father

is much taller than the mother (25). A short woman with a small
pelvis might give birth to a large neonate with a large head,
inherited from a much taller father. As this suggests, shorter
women, on average, have harder births than taller women (25–30).
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Given the high heritability of stature (24, 31, 32), we therefore
also predict that the stronger obstetric selection pressure on shorter
women has led to a pelvis with a birth canal that is more shaped
toward obstetric demands in comparison with taller women.
We suggest that the optimal compromise between a large birth

canal and a narrow pelvis is not uniform across a population but
rather depends on both head size and stature. Hence, correlated
variation between pelvic form, head size, and stature would re-
duce cases of obstructed labor and increase the human pop-
ulation’s mean fitness. The joint selection regimes might have led
to an adaptive integration (covariation) between pelvis shape,
head circumference, and stature within human populations. To
detect such integration patterns within the human body, we as-
sess the covariation between human pelvis shape, head circum-
ference, and stature in males and females by applying geometric
morphometrics to fine-resolution 3D landmark data (Fig. 1 and
Table S2) from 99 human skeletons.

Results
On average, females had a broader and flatter pelvis with a wider
and shallower pelvic cavity than males (Fig. 2; see Table S3 for
summary statistics of pelvic measurements in males and females).
As head circumference and stature were correlated (r = 0.45 in

females and r = 0.49 in males; see also ref. 33), the direct effects
of head circumference and stature on pelvis shape, independent
of each other, were computed by regressing pelvis shape on both
variables (multivariate multiple regression of Procrustes shape
coordinates on stature and head circumference). Summary sta-
tistics for head circumference and stature are given in Table 1.
Pelvis shape was significantly associated with stature in both
sexes and with head circumference in females (Table 2). Fig. 3
illustrates the regression results by 3D reconstructions of average
pelvis shapes for short and tall persons, respectively. Taller in-
dividuals had, on average, a relatively higher and narrower pelvis

with a more oval pelvic inlet and a more forward projecting
symphysis than shorter individuals. In males the sacrum and
the pubic symphysis increased in relative length with increasing
stature. This effect was only weakly present in females. Similarly,
Fig. 4 illustrates the regression results for persons with large and
small heads. Females with a large head had, on average, a relatively
shorter sacrum that projects outwards from the birth canal. This
association was not present in males. In both sexes, however, the
pelvic inlet tended to be more circular in individuals with larger
heads and more oval in individuals with smaller heads. The visual
results from the 3D reconstructions (Figs. 3 and 4) were confirmed
by regressions of selected pelvis measures (sacral length, sacral
angle, anteroposterior diameter of the outlet, and inlet shape) on
stature and head circumference (Table 3).
The magnitude of pelvic shape change (in units of Procrustes

distance) connected to stature and head circumference was only
slightly larger for females than for males (Table 2), but the pattern
of shape change differed between the sexes. The pelvic shape
change associated with stature differed significantly between males
and females (P < 0.001 for a test of the angle between the vectors
of regression coefficients), as did the shape pattern associated with
head circumference (P < 0.001). The correlation of stature with
the pelvic shape scores (as a measure of the strength of associa-
tion) was similar in both sexes (Table 2 and Fig. 5), whereas the
corresponding correlation for head circumference was larger for
females than for males (Table 2 and Fig. 5).

Discussion
The human pelvis must serve two conflicting purposes: childbirth
and bipedal locomotion. Pelvic morphology is therefore exposed
to different selection pressures in males and females, which led
to the well-known sexual dimorphism in human pelvis shape (34–
36) that was also confirmed in our study (Fig. 2). The risk of
cephalopelvic disproportion—and hence the strength of obstetric
selection—is associated with the mother’s stature (25–30) and
the newborn’s head size, which in turn is genetically correlated
with the head size of the mother (23). The optimal compromise
solution for pelvis shape may thus not be uniform within a
population but may rather depend on stature and head size.
Integration of pelvis shape with stature and head size would
therefore reduce the frequency of obstructed labor and increase

Fig. 1. Pelvic landmarks. The full set of 126 3D pelvic landmarks measured
on each pelvis, shown as red spheres on the mean pelvis shape, are shown in
(A) anterior, (B) superior, and (C) lateral view. The mean pelvis shape was
computed as the average shape of all individuals in our dataset.

Fig. 2. Sexual dimorphism in the human pelvis. (A) The average female
pelvis shape and (B) the average male pelvis shape in the sample, in frontal
view. The differences between these two average shapes illustrate well-
known patterns of sexual dimorphism in the human pelvis. Females have a
broader and flatter pelvis, a wider and shallower pelvic cavity, a wider
subpubic angle, and smaller acetabula than males.

Table 1. Summary statistics for stature and head circumference,
separately for males and females

Females, mm Males, mm

Measure Mean SD Mean SD

Stature 1,595.7 65.8 1,731.2 76.8
Head circumference 532.2 23.1 552.4 18.9

Table 2. Results of the regression of pelvis shape on stature and
head circumference, separately for females and males

Stature Head circumference

Sex Cor. Procr. P value Cor. Procr. P value

Females 0.50 0.038 <0.001 0.67 0.030 <0.001
Males 0.53 0.031 <0.001 0.53 0.028 0.19

Shown are the following: correlation (Cor.) between the regression scores
and the two variables (indicating the strength of the association), magni-
tude of shape effects in units of Procrustes distance (Procr.) associated with
the two variables (measured as the norm of the vector of regression coeffi-
cients multiplied by 2 SDs of stature/head circumference), and the P value of
the null hypothesis of no association between pelvis shape and stature/head
circumference.
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the population’s mean fitness. Accordingly, we hypothesized that
correlational selection has produced patterns of covariance be-
tween pelvis shape and other body dimensions. Earlier studies
based on smaller sets of linear measurements could not clearly
demonstrate such patterns (37–40).
Here we showed that the shape of the human pelvis is indeed

associated with body height and head circumference. Both in

males and females, persons with a smaller head have, on average,
a more oval pelvic inlet (a larger ratio of anteroposterior di-
ameter to transverse diameter), whereas persons with a larger
head have a rounder pelvic inlet. Similarly, taller persons tend to
have a more oval pelvic inlet and shorter persons a rounder
pelvic inlet. This link between inlet shape and stature has been
identified in several other studies (37, 41–43). The obstetric

Fig. 3. Association between pelvis shape and stature, illustrated by average pelvis shapes for individuals with short and tall stature, separately for females
and males. The shape differences shown here correspond to the partial linear regression coefficients for stature from the shape regressions. Hence, they
represent the association of pelvis shape with stature, independent of head circumference. Each of these pelvis shapes is shown in anterior, superior, and
lateral view (Top, Middle, and Bottom, respectively). The magnitude of the displayed shape differences corresponds to a deviation of ±40 cm in stature from
the sample average, which is approximately a twofold extrapolation of the actually occurring variation. On average, taller persons have a taller and narrower
pelvis with longer ilial blades and a shorter relative distance between the acetabula compared with shorter persons. Taller persons also have a more oval
pelvic cavity with an outward-projecting pubic symphysis, whereas short persons have a rounder pelvic cavity. The relative height of the sacrum and the
symphysis increases with stature in males. This effect is weakly present in females.

Fig. 4. Association between pelvis shape and head circumference, illustrated by average pelvis shapes for individuals with small and large head circum-
ference, separately for females and males. These shape differences correspond to the partial linear regression coefficients for head circumference from the
shape regressions. Hence, they represent the association of pelvis shape with head circumference, independent of stature. Each of these pelvis shapes is
shown in anterior, superior, and lateral view (Top, Middle, and Bottom, respectively). The magnitude of the displayed shape differences corresponds to a
deviation of ±10 cm in head circumference from the sample average, which is approximately a twofold extrapolation of the actually occurring variation. Both
in males and females, a round pelvic cavity is associated with a large head, whereas an oval pelvic cavity is associated with a small head. On average, females—
but not males—with a large head have a shortened sacrum projecting outward from the birth canal.
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literature reports that a pelvis with a round inlet—referred to as
a “gynecoid” pelvis—is superior to other pelvis shapes in ac-
commodating the head of the fetus during childbirth (44–46).
Although the association of stature and head size with overall

inlet shape is similarly present in both males and females, we also
found highly sex-specific patterns. In females, the sacrum tilts
outwards with increasing head circumference, thus enlarging the
birth canal in large-headed females. This does not occur in
males. It has been reported that the sacral inclination has an
important effect on lower pelvic capacity during childbirth (44,
45) and that women who required an emergency Cesarean sec-
tion had a more narrow pelvic outlet (i.e., an inward-projecting
sacrum) than a control group (47).
Around these average patterns that we detected, pertinent

individual variation is present (Fig. 5 and Table 3). Also, the
individual risk of obstructed labor is influenced by numerous
other factors, many of which are environmental (18). However,
as long as the average risk of cephalopelvic mismatch in a pop-
ulation is statistically associated with stature and head size and as
long as enough independent genetic variation for these traits is
present, the population is expected to evolve an adaptive co-
variance pattern (48). We therefore suggest that the apparently
adaptive covariance patterns, which we identified, have origi-
nated from the correlational selection on pelvis and head di-
mensions during the birth process.
Correlational selection can lead to linkage disequilibrium—

the nonrandom association of genes underlying the coselected
traits—and hence to the phenotypic integration of these traits
(48–50). It has also been proposed that correlational selection
can lead to integration at a developmental–genetic level by the
evolution of genes with adaptive pleiotropic effects on the traits
(51, 52) or by the joint inheritance of beneficial gene combina-
tions due to genetic linkage (physical proximity at the chromo-
somes) (53). We cannot directly assess from our data at which
level pelvis shape is integrated with stature and head size.
However, the presence of the same integration pattern of overall
inlet shape with head circumference and stature in both males
and females—even though the obstetric demands only exist in
females—indicates integration at the genetic level (linkage or
pleiotropy). The origin of female-specific integration patterns
remains unclear; its analysis would require fine-scale genetic
association studies.
To conclude, we found pervasive integration of pelvis shape,

including the shape of the inlet, with stature and head circum-
ference. The female integration, which we detected, is evidently
advantageous for childbirth; it matches the patterns reported in
the gynecological literature. Despite individual variation around

this average association pattern and considerable phenotypic
plasticity of neonatal head size and maternal pelvis form, this
integration may have helped to alleviate the obstetric dilemma.
The fit of the human fetus through the maternal birth canal is so
tight that evolutionary change of pelvis shape, of the extent of
the associations detected here, is relevant for obstetrics and is
likely to have reduced rates of maternal mortality in humans.

Materials and Methods
The data used in this analysis stem from a large dataset compiled by Herbert
Reynolds et al. (54) in 1982 in a study for the Federal Aviation Administration
(Washington, DC). Their original aim was to develop a geometric model of
human pelvic morphology to improve crash test devices and ultimately ve-
hicle safety. We are grateful to Reynolds et al. for sharing these data. The
measured skeletons are part of the Hamann–Todd collection at the Cleve-
land Museum of Natural History. Before skeletonization of the human
bodies, which were acquired between 1919 and 1939 to the collection, a
complete series of anthropometric measurements were taken. Of these
measurements, we used head circumference and stature. From nearly 3,000

Table 3. Summary statistics for sacral length, inlet shape, sacral angle, and anteroposterior diameter of the outlet, together with
associations between these variables and head circumference and stature, separately for males and females

Females Males

Measure Mean SD Slope head Slope stature Mean SD Slope head Slope stature

Sacral length 104.8 12.3 −0.0162 0.1073 112.5 14.3 −0.0582 0.0792
Sacral angle 78.8 8.3 0.1414 −0.0359 79.4 8.8 −0.0025 −0.0112
Inlet shape 1.11 0.13 0.0010 −0.0004 1.15 0.11 0.0016 −0.0004
Antero-posterior diameter of the outlet 118.3 10.4 0.1781 0.0492 111.0 7.6 −0.0598 0.0285

Sacral length is defined as in Table S3. Sacral angle is the angle at the promontorium between (i) the anteroposterior diameter of the inlet and (ii) the
sacral length, both as in Table S3. Inlet shape is the ratio of anteroposterior diameter to transverse diameter of the inlet; both distances are defined as in Table
S3. Anteroposterior diameter of the outlet is as in Table S3. Slope head and slope stature are the partial regression coefficients from the regressions of the
measures on head circumference and stature. They describe the corresponding amount of change for one unit of change in head circumference or stature,
respectively. Inlet shape is dimensionless, sacral angle is in degrees, and all other measurements are in millimeters. Sacral length increases with stature in both
females and males but decreases with head size. The sacral angle increases substantially with head size in females but decreases slightly in males. The
anteroposterior diameter of the outlet increases with head size in females but not in males, confirming that the sacrum projects outwards in large-headed
females. The regression slopes for inlet shape confirm that the inlet becomes more oval with increasing stature and rounder with increasing head size in
females and males.
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Fig. 5. Shape regression scores. Shown is a scatterplot of stature versus the
regression scores from the regression of pelvic shape on stature (with head
circumference as covariate). As these scores are projections of the individual
pelvis shapes on the corresponding vector of regression coefficients (linear
combination of the shape variables weighted by their covariance with
stature), they are the shape scores with maximum covariance with stature.
The scatterplots are computed separately for (A) females and (B) males.
Similar scatterplots of head circumference versus the corresponding re-
gressions scores are shown in C and D for females and males. Open circles
represent female pelvises, and filled circles represent male pelvises.
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available skeletal specimens at the Hamann–Todd collection, the study
sample of Reynolds et al. was selected to match the body weight and size
distribution of the US population. Only adult specimens, 18–55 y old at time
of death, were used. The pelvises were reassembled, and 3D landmark co-
ordinates were recorded on each of the articulated pelvises using a Hewlett
Packard digitizer (54).

We performed a geometric morphometric shape analysis of the 99 human
pelvises of US American Whites (46 males and 53 females). We selected 71 of
the landmarks measured by Reynolds et al., based on the quality of their
definition and on the availability in the sample. In several individuals, some
landmarks were still missing (3.7% of all landmarks in all individuals). These
missing landmarks were reconstructed by thin-plate spline interpolation
using the sample mean shape as a reference (55, 56).

Because most landmarks were measured on the left hemipelvis only, we
mirrored all unpaired landmarks across the midplane and thereby restored
the data for the right hemipelvis. The midplane was estimated as a least-
squares fitted plane to the unpaired midlandmarks (55). This resulted in
configurations of 126 3D landmarks per pelvis (Fig. 1). We computed a
Generalized Procrustes Analysis of these configurations to remove variation
in overall size, position, and orientation (55, 57).

Based on the resulting Procrustes shape coordinates, we computed the
average female andmale pelvis shapes. To determine towhich extent the two
variables of head circumference and stature account for differences in pelvis
shape, we regressed the Procrustes shape coordinates on the two variables
(multivariate multiple regression), separately for males and females. These
“shape regressions” yield vectors of regression coefficients that describe
how all of the pelvic shape dimensions change together in response to one
unit change of stature or head circumference. The resulting pattern of shape
change was visualized by adding a multiple of the vector of regression co-
efficients to the mean shapes for each sex. In this way we produced ex-
trapolations for pelvis shapes of females and males with large and small
body height or head circumference. To test for the statistical significance of
the shape regressions, we performed permutation tests for the regressions
with explained variance as a test statistic and with 5,000 random permuta-
tions (Table 2). As a goodness-of-fit estimate for the shape regressions, we
computed correlations and scatterplots between head circumference and
the corresponding regression scores (projections of the individual pelvis

shapes on the vector of regression coefficients) and did the same for stature
(Table 2 and Fig. 5). To evaluate the magnitude of shape change (summed
over all landmarks) that is associated with stature and head circumference,
we computed the norm of the corresponding regression coefficient vectors,
multiplied by 2 SDs (pooled within both sexes), of stature or head circum-
ference, respectively (Table 2). This corresponds to the amount of shape
change (in units of Procrustes distance) associated with 2 SDs of stature and
head circumference. These analyses were computed for females and males
separately (Table 2). To test whether the pattern of associated shape change
differs between males and females, we performed permutation tests with
the angle between the female and male regression vectors as the test sta-
tistic and with 5,000 random permutations.

To visualize group differences and regression results, we used a 3D surface
model of an articulated pelvis (www.turbosquid.com, product ID 710664,
Oormi Creations), on which we also measured the 126 3D landmarks using
the software Amira (version 5.4.5, FEI Visualization Sciences Group). We
deformed this surface model to the target landmark configurations using
the thin-plate spline interpolation algorithm (55, 56, 58, 59).

The surface models in Figs. 3 and 4 are visualizations of the regression
coefficients and therefore represent the effect sizes of the association of
pelvis shape with stature and head circumference for the two sexes. The
magnitude of the associated shape change is expressed by the Procrustes
distance reported in Table 2. The strength of the association is reflected by
the correlation of stature and head circumference with the corresponding
regression scores, tested against the null hypothesis of no association by the
permutation tests (Table 2 and Fig. 5).

All morphometric and statistical analyses were performed with Mathe-
matica 8 (Wolfram Research, Inc.).
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